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In this paper, we report that a known dinuclear Fe complex, [tpa(H2O)FeOFe(H2O)tpa](ClO4)4
(tpa: tris(2-pyridylmethyl)amine), is an efficient catalyst toward organic sulfide oxidation in the
presence of urea-hydrogen peroxide.
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1. Introduction

Selective oxidation of organic compounds is an important reaction in the laboratory as well
as in chemical industry for producing chemical intermediates to afford useful chemicals
[1–7]. Transition metal complexes as catalysts in organic synthesis are extensively
employed in a wide range of areas of preparative organic chemistry [8–11].

J.L. Fillol, M. Costas and co-workers reported that mononuclear Fe complexes with neu-
tral tetradentate nitrogen-donor ligands oxidize water with high efficiency, high turnover
frequency and number, in the presence of cerium(IV) ammonium nitrate for a period of
hours [12]. Different experiments show that the complex is stable and decomposition prod-
ucts are not the catalysts for water oxidation [13–15]. The stability of iron(III) complexes in
the presence of cerium(IV) ammonium nitrate is promising for other oxidation reactions.
Recently, M.M. Najafpour’s group reported a dinuclear iron complex with a tetradentate
nitrogen-donor ligand, similar as the one used by Fillol, Costas and co-workers [15]. The
catalytic activity of this compound toward water oxidation was even more pronounced than
for mononuclear complexes [15]. Here, we used the same dinuclear Fe(III) complex, [tpa
(H2O)FeOFe(H2O)tpa](ClO4)4, tpa = tris(2-pyridylmethyl)amine (1), to oxidize organic sul-
fides in the presence of urea-hydrogen peroxide (UHP) [16].

2. Experimental

2.1. General procedure

Chemicals and solvents were purchased from Fluka and Merck Chemical companies. The
products of oxidation reactions were analyzed by an HP Agilent 6890 gas chromatograph
equipped with a HP-5 capillary column and a flame-ionization detector.

2.2. Synthesis of [tpa(H2O)FeOFe(H2O)tpa](ClO4)4

The complex was synthesized by a previously reported method [15]: a mixture of tpa·3H-
CIO4 (0.2 g, 0.35 mM) and triethylamine (0.12 g, 1.2 mM) dissolved in methanol (7.0 mL)
was added to Fe(C1O4)3·6H2O (0.19 g, 0.4 mM) dissolved in water : methanol (1 : 1, 3 mL)
to produce a red solution. Red crystals of 1 were deposited over a few hours. Single crystal
of 1 in form of red block was chosen and mounted on a Stoe IPDS2t diffractometer
equipped with Mo Kα radiation source to confirm the structure.

2.3. General procedure for sulfide oxidation

For sulfide oxidation experiments, we used a standard procedure. To a solution of sulfide
(0.2 mM), chlorobenzene (0.2 mM) as an internal standard and [tpa(H2O)FeOFe(H2O)tpa]
(ClO4)4 (0.005 mM) in a 1 : 1 mixture of CH3OH/CH2Cl2 (1 mL) 0.4 mM UHP was added
as an oxidant. The mixture was stirred at room temperature and the reaction progress was
monitored by GC. Assignments of the products were made by comparison with authentic
samples.
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3. Results and discussion

3.1. Complex characterization

The identity of the crystalline product was confirmed by X-ray diffraction studies in unit
cell constants performed for multiple crystals. In our previous report [15] we undertook a
full structure determination of this catalyst, showing it to comprise a [tpa(H2O)FeOFe(H2O)
tpa](ClO4)4 perchlorate salt, isomorphous with the reported structure of a different solvate
[16]. Structure of the binuclear cation is shown in figure 1 (top). The specific staggered
geometry of the H2O–Fe–O–Fe–OH2 moiety [figure 1 (bottom)] might be crucial for the
catalytic activity, directing a favorable hydrogen bonding pattern. A characteristic feature is
shortening of the Fe–O (bridging) bond lengths, thus giving them a partial π-character and
limiting the rotation of the terminal ligands bonded to Fe around the Fe–O–Fe axis [17].

3.2. Catalytic activity

In order to evaluate the catalytic activities of [tpa(H2O)FeOFe(H2O)tpa](ClO4)4 for oxida-
tion of sulfides, the reactions were optimized with respect to the oxidation of methylphenyl
sulfide (MPS) through the investigation of solvent, the amount of the catalyst, and the
amount of UHP.

Figure 1. Top: structure of the complex cation in 1 [15] (H atoms omitted); bottom: two views of the staggered
Fe(O)–O–Fe(O) moiety.

3028 M. Amini et al.
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Dichloromethane, chloroform, acetonitrile, acetone, methanol, and 1 : 1 mixture of
CH3OH/CH2Cl2 were employed as solvents in search for optimal conditions. Among
the solvents examined, the 1 : 1 mixture of CH3OH/CH2Cl2 was found to be the best
for this procedure (table 1). The effect of the amount of the catalyst on the conversion
rate and the selectivity of the MPS oxidation was also studied (at room temperature
for 15 min in CH2Cl2/H2O). The conversion of MPS increases monotonously with
addition of catalyst from 0 to 0.005 mM (table 1). When the amount of the catalyst is
increased to 0.0075 mM, the selectivity of the methylphenylsulfide oxidation reduces
from 84 to 75% (table 1, entry 8). Reaction without addition of catalyst proceeds only
very slightly. Hence, the amount of the catalyst enhances the reaction rate for selective
oxidation of sulfides. The amount of UHP could also significantly affect the selectivity
of the conversion to methylphenylsulfoxide (table 1, entries 9–12). When the amount
of UHP was increased from 0.1 to 0.4 mM, the conversion of MPS increased drasti-
cally from 36 to 99%. With a further increase of the amount of UHP to 0.5 mM, the
selectivity to methylphenylsulfoxide decreases from 84 to 55%. Selectivity of the con-
version to sulfoxide is better for reactions with 2 equiv. of the oxidant when compared
to the use of 2.5 equiv. of UHP. The reaction time could also significantly affect the
MPS conversion and methylphenylsulfoxide selectivity (figure 2). When the time of the
reaction was increased from 0 to 15 min, the conversion of MPS increased drastically
from 0 to 99%. With a further increase of the reaction time to 45 min, the selectivity
of conversion to benzaldehyde decreases from 84 to 33%.

After optimization, a series of various types of structurally diverse sulfides were
subjected to the oxidation reaction using [tpa(H2O)FeOFe(H2O)tpa](ClO4)4 as a catalyst
and UHP as an oxidant. Arylalkyl (table 2, entries 1 and 2), arylbenzyl (table 2, entry 3),
dibenzyl (table 2, entry 4), diaryl (table 2, entry 5), and dialkyl (table 2, entries 6–8)
sulfides underwent clean and selective oxidation to the corresponding sulfoxide under air,
with impressive selectivities (81–93%). Very good conversions of the substrates, depending
on the nature of the sulfide, of 71–99% (TON = 28.4–39.6) were obtained in all cases.

Table 1. The effect of various conditions on the oxidation of methylphenylsulfide by [tpa(H2O)FeOFe(H2O)tpa]
(ClO4)4/UHP.

Entry
Amount of the catalyst

(mM)
Amount of UHP

(mM)
Solvent
(1 mL)

Conversion
(%)a

Selectivity to
sulfoxide (%)b

1 0.005 0.4 CH2Cl2 17 100
2 0.005 0.4 CHCl3 14 100
3 0.005 0.4 CH3CN 68 95
4 0.005 0.4 CH3OH 59 91
5 0.005 0.4 CH3COCH3 47 98
6 0.005 0.4 CH2Cl2 : CH3OH 99> 84
7 0 0.4 CH2Cl2 : CH3OH Trace –
8 0.0075 0.4 CH2Cl2 : CH3OH 99> 75
9 0.005 0 CH2Cl2 : CH3OH – –
10 0.005 0.1 CH2Cl2 : CH3OH 36 100
11 0.005 0.2 CH2Cl2 : CH3OH 58 94
12 0.005 0.3 CH2Cl2 : CH3OH 81 90
13 0.005 0.5 CH2Cl2 : CH3OH 99> 55

aThe GC yields (%) are measured relative to the starting sulfide.
bSelectivity to sulfoxide = (sulfoxide/(sulfoxide + sulfone)) × 100.
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It was observed that aromatic sulfides undergo oxidation reactions more easily than the
aliphatic substrates. The mechanism of oxidation of organic sulfide by 1 is not known, but
it was reported that a very similar dimer undergoes an intramolecular attack by a hydroxide
ion coordinated to one Fe center on the carbon of acetonitrile coordinated to the adjacent
Fe [scheme 1(a)] [17]. A similar mechanism was proposed for water oxidation catalyzed by
this dimer [scheme 1(b)] [15]. In the presence of H2O2, reaction of organic sulfide to a
Fe=O could be proposed as the mechanism for sulfide oxidation by 1.

Figure 2. The effect of the reaction time on the MPS oxidation. The molar ratios for [tpa(H2O)FeOFe(H2O)tpa]
(ClO4)4 : substrate : oxidant are 1 : 40 : 80.

Table 2. Oxidation of sulfides catalyzed by [tpa(H2O)FeOFe(H2O)tpa](ClO4)4 /UHP.
a

Entry Substrate Conversion (%)b (TON)c Selectivity (%)d

1 S 99 > (39.6) 84

2 S 99 > (39.6) 86

3

S

98(39.2) 88

4

S

99(39.6) 81

5 S 85(34) 93

6 S 73(29.2) 91
7 S 71(28.4) 90
8 S

C8H17C8H17
71(28.4) 89

aReaction condition: substrate (0.2 mM), UHP (0.4 mM), [tpa(H2O)FeOFe(H2O)tpa](ClO4)4 (0.005 mM). The reactions
were performed in a (1 : 1) mixture of CH2Cl2/CH3OH (1 mL) under air at room temperature within 15 min.
bThe GC yields (%) are measured relative to the starting sulfide.
cTON = (mM of sulfoxide + mM of sulfone)/mM of catalyst.
dSelectivity to sulfoxide = (sulfoxide/(sulfoxide + sulfone)) × 100.
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4. Conclusion

The oxidation of organic sulfides with UHP by a water-oxidizing dinuclear iron complex
with high yield and selectivity was reported.
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